Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidis.

نویسندگان

  • T Daniel Andrews
  • Takashi Gojobori
چکیده

The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico Analysis and Modeling of ACP-MIP–PilQ Chimeric Antigen from Neisseria meningitidis Serogroup B

Background: Neisseria meningitidis, a life-threatening human pathogen with the potential to cause large epidemics, can be isolated from the nasopharynx of 5–15% of adults. The aim of the current study was to evaluate biophysical and biochemical properties and immunological aspects of chimeric acyl-carrier protein-macrophage infectivity potentiator protein-type IV pilus biogenesis protein ...

متن کامل

Construction and assessment of the immunogenicity and bactericidal activity of fusion protein porin A from Neisseria meningitidis serogroups A and B admixed with OMV adjuvant as a novel vaccine candidate

Objective(s): The porins A and B and also outer membrane vesicles (OMVs) of Neisseria meningitidis are used for vaccine purposes. In the present study, we aimed to design a new vaccine candidate based on a fusion of PorA of serogroups A and B of N. meningitidis admixed with OMV and evaluate it in an animal model.Materials and Methods: Af...

متن کامل

In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis

Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...

متن کامل

Characterization of a Novel Antisense RNA in the Major Pilin Locus of Neisseria meningitidis Influencing Antigenic Variation

UNLABELLED Expression of type four pili (Tfp) is essential for virulence in Neisseria meningitidis. Pili mediate adhesion, bacterial aggregation, and DNA uptake. In N. meningitidis, the major pilin subunit is encoded by the pilE gene. In some strains, PilE is subject to phase and antigenic variation, which can alter Tfp properties and together offer a possible mechanism of immune escape. Pilin ...

متن کامل

Variation in the Neisseria lactamica porin, and its relationship to meningococcal PorB

One potential vaccine strategy in the fight against meningococcal disease involves the exploitation of outer-membrane components of Neisseria lactamica, a commensal bacterium closely related to the meningococcus, Neisseria meningitidis. Although N. lactamica shares many surface structures with the meningococcus, little is known about the antigenic diversity of this commensal bacterium or the an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 166 1  شماره 

صفحات  -

تاریخ انتشار 2004